Identification

Title

Electrodynamics of magnetosphere-ionosphere coupling and feedback on magnetospheric field line resonances

Abstract

We present a new dynamic model that describes coupling between standing inertial or ion-acoustic-gyroradius-scale shear Alfvén waves, compressional modes, and auroral density disturbances. The model is applied to the excitation of field line resonances (FLRs) in dipolar and stretched geomagnetic fields in Earth's magnetosphere. Magnetosphere-ionosphere coupling is included by accounting for the closure of magnetospheric field-aligned currents (FACs) through Pedersen currents in the ionosphere. A second new aspect is that the height-integrated Pedersen conductivity is treated as a dynamic parameter by electrodynamically coupling the two-dimensional finite element wave model "Topo" to the ionospheric ionization model "Global Airglow Model (GLOW)." We demonstrate that field line stretching brings the equatorial plasma β above unity, where the reduced MHD formulism for low-frequency plasma breaks down. As an application of our model, we study a specific FLR event observed on 31 January 1997, when the NASA FAST satellite was over the Canadian Auroral Network for the OPEN Program Unified Study (CANOPUS) Gillam station. Using geomagnetic fields computed from the T96 magnetic field model, we show that auroral electron precipitation produces strong Pedersen conductivity enhancements that control the final amplitude and width of the excited FLR, along with the amplitude of associated density fluctuations. The predictions of the model are generally consistent with observations of this event.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7k937rd

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-10-19T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T16:01:18.035541

Metadata language

eng; USA