Identification

Title

Dependence of the high-latitude lower thermospheric momentum forcing on the interplanetary magnetic field

Abstract

We analyze the forces acting on the high-latitude lower thermospheric wind system below 170 km for Southern Hemisphere summer conditions, as a function of the interplanetary magnetic field (IMF) direction, on the basis of numerical simulations. The pattern and magnitude of the forces and their relative contributions to the wind system vary strongly with respect to the direction of the IMF. At higher altitudes, above 130 km, for negative B y , strong anticyclonic winds are accelerated primarily by rotational Pedersen ion drag and are maintained by an approximate balance among the divergent/convergent Coriolis, horizontal advection, and relatively weak pressure-gradient accelerations. For positive B y , the pressure-gradient acceleration is increased, while the inertial forces are reduced. For negative B z , in comparison with negative and positive B y , the winds and forces extend to lower latitudes. The patterns of the accelerations for positive B z are similar to those for negative B z , but the magnitudes tend to be significantly smaller. At lower altitudes, below 120 km, the horizontal advection acceleration is less important but still contributes significantly to the maintenance of the neutral circulation in the polar cap region for positive B y . The difference of winds and forces above 130 km for negative and positive B y , with respect to winds and forces for zero IMF, show a simple structure with a strong anticyclonic or cyclonic vortex near the pole, respectively, centered differently for the two B y directions. The difference of winds and forces for negative and positive B z are more complex than those for negative and positive B y and extend to lower latitudes. Below 120 km, the difference of winds and forces for negative and positive B y are much stronger near the pole than for negative and positive B z , indicating that the IMF B y component tends to dominate effects on the neutral winds in the polar cap at low thermospheric altitudes. For all IMF conditions, at higher altitudes, the rotational ion-drag acceleration makes the dominant contribution to the neutral velocity tendency. This feature is most pronounced when the IMF B z is negative.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d75m65zs

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-06-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:01:28.855642

Metadata language

eng; USA