Identification

Title

Sustained nonphotochemical quenching shapes the seasonal pattern of solar‐induced fluorescence at a high‐elevation evergreen forest

Abstract

Traditional methods of carbon monitoring in mountainous regions are challenged by complex terrain. Recently, solar‐induced fluorescence (SIF) has been found to be an indicator of gross primary production (GPP), and the increased availability of remotely sensed SIF provides an opportunity to estimate GPP across the Western United States. Although the empirical linkage between SIF and GPP is strong, the current mechanistic understanding of this linkage is incomplete and depends upon changes in leaf biochemical processes in which absorbed sunlight leads to photochemistry, heat (via nonphotochemical quenching [NPQ]), fluorescence, or tissue damage. An improved mechanistic understanding is necessary to leverage SIF observations to improve representation of ecosystem processes within land surface models. Here we included an improved fluorescence model within the Community Land Model, Version 4.5 (CLM 4.5), to simulate seasonal changes in SIF at a subalpine forest in Colorado. We found that when the model accounted for sustained NPQ, this provided a larger seasonal change in fluorescence yield leading to simulated SIF that more closely resembled the observed seasonal pattern (Global Ozone Monitoring Experiment‐2 [GOME‐2] satellite platform and a tower‐mounted spectrometer system). We found that an acclimation model based on mean air temperature was a useful predictor for sustained NPQ. Although light intensity was not an important factor for this analysis, it should be considered before applying the sustained NPQ and SIF to other cold climate evergreen biomes. More leaf‐level fluorescence measurements are necessary to better understand the seasonal relationship between sustained and reversible components of NPQ and to what extent that influences SIF.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7pr804r

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-07-12T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:13:20.505177

Metadata language

eng; USA