Identification

Title

Analysis of migrating diurnal tides detected in FORMOSAT-3/COSMIC temperature data

Abstract

The characteristics of atmospheric tides in the upper troposphere and lower stratosphere region are investigated using radio occultation (RO) measurements performed by the Formosa Satellite Mission-3/Constellation Observing System for Meteorology, Ionosphere, and Climate (FORMOSAT-3/COSMIC) satellite constellation and compared to tides observed in short-term forecast model fields of European Centre for Medium-Range Weather Forecasts (ECMWF) and National Centers for Environmental Prediction (NCEP). Spectral analysis of 2 years of monthly data (2007 to 2008) yields the migrating diurnal tide to be the largest spectral component. This diurnal tide shows similar temporal, latitudinal, and altitudinal characteristics in all data sets equatorward of 50°. Beyond 50°, COSMIC local time sampling is insufficient within 1 month, which prevents space-time spectral analysis from isolating atmospheric waves. Diurnal tides of temperature are characterized by largest amplitudes in the tropics (0.8 K to 1.0 K at an altitude of 30 km). Amplitudes of diurnal tides analyzed in model data are more pronounced by ~20%. An annual cycle of the amplitudes, characteristically linked to the movement of the intertropical convergence zone, is clearly revealed. Tropical diurnal phase features downward progression of waves fronts with a vertical wavelength of 20 km. Extratropical diurnal tides are most pronounced in the model data sets with amplitudes of up to 0.5 K at 30 km. In this analysis we also see the influence of high-altitude initialization of RO data by background information in using data processed by two different centers (University Corporation for Atmospheric Research (UCAR) and Wegener Center (WEGC)). UCAR data, initialized by a climatology without tidal information, exhibit no appreciable extratropical diurnal tides, while WEGC data, initialized by ECMWF forecasts, show more pronounced ones. Overall the results underpin the utility of the local-time resolving COSMIC RO constellation data for monitoring diurnal tide dynamics in the stratosphere. The agreement between observational and model data further confirms that the tidal dynamics is appropriately captured in the models, which is important for other (middle/upper) atmosphere models relying on ECMWF or NCEP dynamics.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d76m37m9

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-07-21T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2010 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:48:48.942550

Metadata language

eng; USA