Identification

Title

GPS radio occultation for climate monitoring and change detection

Abstract

Observation of the atmospheric climate and detection of changes require high quality data. Radio Occultation (RO) using Global Positioning System (GPS) signals is based on time measurements with precise atomic clocks. It provides a long-term stable and consistent data record with global coverage and favorable error characteristics. Highest quality and vertical resolution is given in the upper troposphere and lower stratosphere (UTLS). RO data exist from the GPS/Met mission within 1995-1997, and continuous observations are available since 2001. We give a review on studies using RO data for climate monitoring and change detection in the UTLS and discuss RO characteristics and error estimates, climate change indicators, trend detection, and comparison to conventional upper-air data. These studies showed that RO parameters cover the whole UTLS with useful indicators of climate change, being most robust in the tropics. Refractivity is most sensitive in the lower stratosphere (LS) and tropopause region, pressure/geopotential height and temperature over the UTLS region. An emerging climate change signal in the RO record can be detected for geopotential height of pressure levels and for temperature, reflecting warming of the troposphere and cooling of the LS. The results are in agreement with trends in radiosonde and ERA-Interim records. Climate model trends basically agree as well but they show less warming/cooling contrast across the tropical tropopause. (Advanced) Microwave Sounding Unit LS bulk temperature anomalies show significant differences to RO. Overall, the quality of RO climate records is suitable to fulfill the requirements of a global climate change monitoring system.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d78w3f03

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2011-11-17T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2011 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:12:06.943785

Metadata language

eng; USA