Identification

Title

Parameterization of the bulk liquid fraction on mixed-phase particles in the predicted particle properties (P3) scheme: Description and idealized simulation

Abstract

Bulk microphysics parameterizations that are used to represent clouds and precipitation usually allow only solid and liquid hydrometeors. Predicting the bulk liquid fraction on ice allows an explicit representation of mixed-phase particles and various precipitation types, such as wet snow and ice pellets. In this paper, an approach for the representation of the bulk liquid fraction into the predicted particle properties (P3) microphysics scheme is proposed and described. Solid-phase microphysical processes, such as melting and sublimation, have been modified to account for the liquid component. New processes, such as refreezing and condensation of the liquid portion of mixed-phase particles, have been added to the parameterization. Idealized simulations using a one-dimensional framework illustrate the overall behavior of the modified scheme. The proposed approach compares well to a Lagrangian benchmark model. Temperatures required for populations of ice crystals to melt completely also agree well with previous studies. The new processes of refreezing and condensation impact both the surface precipitation type and feedback between the temperature and the phase changes. Overall, prediction of the bulk liquid fraction allows an explicit description of new precipitation types, such as wet snow and ice pellets, and improves the representation of hydrometeor properties when the temperature is near 0 degrees C.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7pc35dq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:22:49.093296

Metadata language

eng; USA