Identification

Title

Advancing precipitation prediction using a new-generation storm-resolving model framework – SIMA-MPAS (V1.0): a case study over the western United States

Abstract

Global climate models (GCMs) have advanced in many ways as computing power has allowed more complexity and finer resolutions. As GCMs reach storm-resolving scales, they need to be able to produce realistic precipitation intensity, duration, and frequency at fine scales with consideration of scale-aware parameterization. This study uses a state-of-the-art storm-resolving GCM with a nonhydrostatic dynamical core - the Model for Prediction Across Scales (MPAS), incorporated in the atmospheric component (Community Atmosphere Model, CAM) of the open-source Community Earth System Model (CESM), within the System for Integrated Modeling of the Atmosphere (SIMA) framework (referred to as SIMA-MPAS). At uniform coarse (here, at 120 km) grid resolution, the SIMA-MPAS configuration is comparable to the standard hydrostatic CESM (with a finite-volume (FV) dynamical core) with reasonable energy and mass conservation on climatological timescales. With the comparable energy and mass balance performance between CAM-FV (workhorse dynamical core) and SIMAMPAS (newly developed dynamical core), it gives confidence in SIMA-MPAS's applications at a finer resolution. To evaluate this, we focus on how the SIMA-MPAS model performs when reaching a storm-resolving scale at 3 km. To do this efficiently, we compose a case study using a SIMAMPAS variable-resolution configuration with a refined mesh of 3 km covering the western USA and 60 km over the rest of the globe. We evaluated the model performance using satellite and station-based gridded observations with comparison to a traditional regional climate model (WRF, the Weather Research and Forecasting model). Our results show realistic representations of precipitation over the refined complex terrains temporally and spatially. Along with much improved near-surface temperature, realistic topography, and land-air interactions, we also demonstrate significantly enhanced snowpack distributions. This work illustrates that the global SIMA-MPAS at storm-resolving resolution can produce much more realistic regional climate variability, finescale features, and extremes to advance both climate and weather studies. This next-generation storm-resolving model could ultimately bridge large-scale forcing constraints and better inform climate impacts and weather predictions across scales.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7rf5zv4

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-11-11T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:50.799259

Metadata language

eng; USA