Identification

Title

Ionospheric electrodynamic response to solar flares in September 2017

Abstract

In this work, the Thermosphere-Ionosphere-Electrodynamics General Circulation Model is used to investigate the responses of ionospheric electrodynamic processes to the solar flares at the flare peaks and the underlying physical mechanisms on September 6 and 10, 2017. Simulations show that solar flares increased global daytime currents and reduced the eastward electric fields during the daytime from the equator to middle latitudes. Furthermore, westward equatorial electric fields and equatorial counter electrojets occurred in the early morning. At the flare peak, these electrodynamic responses are predominantly related to the enhanced E-region conductivity by flares, as the responses of neutral winds and F-region conductivity to flares are negligible. Specifically, the Cowling conductance enhancement is not the major process causing the reduction of zonal electric fields. This electric field reduction is primarily associated with the decrease of the ratio between the field line-integrated wind-driven currents and the conductance. The flare-induced conductivity enhancement is larger but the background wind speed is smaller in the E-region than in the F-region, as a result, the increase of total integrated wind-driven currents is less than the conductance enhancement.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7fx7f0h

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:10:17.772198

Metadata language

eng; USA