Identification

Title

Advanced stratospheric data processing of radio occultation with a variational combination for multifrequency GNSS signals

Abstract

As the understanding of our Earth system grows, the importance of comprehending the structure and processes in the remote stratosphere is intensified and the interest in stratospheric observations mushrooms. Despite its great potential, radio occultation (RO) data have been underused in exploiting the stratosphere. A major reason for the underutilization is the imperfections in preexisting RO data processing methods. We propose an advanced stratospheric RO data processing, where the variational method provides a general framework in which multiple-frequency RO measurements of different quality are effectively combined with the aid of a priori. The variational combination (VAR) is designed to extract the most information from RO measurements, where a priori plays a role of enhancing the observation and attenuating measurement noise. The signal-to-noise ratio (SNR) is found to be a universal quality indicator, which concisely describes the uncertainty of RO measurements in diverse conditions. The measured SNR is used to parameterize a dynamic observation error, which is essential for the VAR to use the observation optimally. Tests with real data show that VAR significantly improves the accuracy of the RO retrieval even in the upper stratosphere, where the RO data were once considered to possess little observational value. When compared with independent radiosonde observations, for instance, the VAR-produced data are more accurate than the analysis from the European Center for Medium-Range Weather Forecasts for which the radiosonde data have been assimilated. The VAR-produced data are also precise enough to reveal the systematic error of the radiosonde data.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d77d2w4r

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-10-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-12T00:05:11.625401

Metadata language

eng; USA