Identification

Title

Seasonal cycles of O₃ in the marine boundary layer: Observation and model simulation comparisons

Abstract

We present a two-step approach for quantitatively comparing modeled and measured seasonal cycles of O₃: (1) fitting sine functions to monthly averaged measurements and model results (i.e., deriving a Fourier series expansion of these results) and (2) comparing the phase and amplitude of the statistically significant terms between the models and measurements. Two and only two sine terms are sufficient to quantify the O₃ seasonal cycle in the marine boundary layer (MBL) in both the measurements and the model results. In addition to the expected fundamental (one sine cycle per year), a second harmonic term (i.e., two sine cycles per year) is identified as a ubiquitous feature of O₃ in the MBL. Three chemistry climate models (Community Atmosphere Model with chemistry, GFDL-CM3, and GISS-E2-R) approximately reproduce many features of the measured seasonal cycles at MBL surface sites throughout the globe, with some notable quantitative disagreements, but give divergent results that do not agree with O₃ sonde measurements above the MBL. This disagreement and divergence of results between models indicate that the treatment of the MBL dynamics in the chemistry-climate models is not adequate to reproduce the isolation of the MBL indicated by the observations. Within the MBL the models more accurately reproduce the second harmonic term than the fundamental term. We attribute the second harmonic term to the second harmonic of opposite phase in the photolysis rate of O₃, while the fundamental term evidently has many influences. The parameters derived from the Fourier series expansion of the measurements are quantitative metrics that can serve as the basis for future model-measurement comparisons.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7736sfz

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-01-16T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:05:56.032740

Metadata language

eng; USA