Identification

Title

Predictability and dynamics of tropical cyclone rapid intensification deduced from high-resolution stochastic ensembles

Abstract

Rapid intensification (RI) of tropical cyclones (TCs) remains one of the most challenging issues in TC prediction. This study investigates the predictability of RI, the uncertainty in predicting RI timing, and the dynamical processes associated with RI. To address the question of environmental versus internal control of RI, five high-resolution ensembles of Hurricane Earl (2010) were generated with scale-dependent stochastic perturbations from synoptic to convective scales. Although most members undergo RI and intensify into major hurricanes, the timing of RI is highly uncertain. While environmental conditions including SST control the maximum TC intensity and the likelihood of RI during the TC lifetime, both environmental and internal factors contribute to uncertainty in RI timing. Complex interactions among environmental vertical wind shear, the mean vortex, and internal convective processes govern the TC intensification process and lead to diverse pathways to maturity. Although the likelihood of Earl undergoing RI seems to be predictable, the exact timing of RI has a stochastic component and low predictability.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d76h4k4h

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2016 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:54:07.137349

Metadata language

eng; USA