Identification

Title

Implementation and comparison of a suite of heat stress metrics within the Community Land Model version 4.5

Abstract

We implement and analyze 13 different metrics (4 moist thermodynamic quantities and 9 heat stress metrics) in the Community Land Model (CLM4.5), the land surface component of the Community Earth System Model (CESM). We call these routines the HumanIndexMod. We limit the algorithms of the HumanIndexMod to meteorological inputs of temperature, moisture, and pressure for their calculation. All metrics assume no direct sunlight exposure. The goal of this project is to implement a common framework for calculating operationally used heat stress metrics, in climate models, offline output, and locally sourced weather data sets, with the intent that the HumanIndexMod may be used with the broadest of applications. The thermodynamic quantities use the latest, most accurate and efficient algorithms available, which in turn are used as inputs to the heat stress metrics. There are three advantages of adding these metrics to CLM4.5: (1) improved moist thermodynamic quantities; (2) quantifying heat stress in every available environment within CLM4.5; and (3) these metrics may be used with human, animal, and industrial applications. We demonstrate the capabilities of the HumanIndexMod in a default configuration simulation using CLM4.5. We output 4× daily temporal resolution globally. We show that the advantage of implementing these routines into CLM4.5 is capturing the nonlinearity of the covariation of temperature and moisture conditions. For example, we show that there are systematic biases of up to 1.5 °C between monthly and ±0.5 °C between 4× daily offline calculations and the online instantaneous calculation, respectively. Additionally, we show that the differences between an inaccurate wet bulb calculation and the improved wet bulb calculation are ±1.5 °C. These differences are important due to human responses to heat stress being nonlinear. Furthermore, we show heat stress has unique regional characteristics. Some metrics have a strong dependency on regionally extreme moisture, while others have a strong dependency on regionally extreme temperature.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7cc11vb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2015-02-05T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright Author(s) 2015. This work is distributed under the Creative Commons Attribution 3.0 License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-12T00:02:13.288841

Metadata language

eng; USA