Identification

Title

The influence of terrain smoothing on simulated Convective Boundary-Layer depths in mountainous terrain

Abstract

Many applications rely on a correct estimation of the convective boundary layer (CBL) depth over mountainous terrain, but often these applications use numerical model simulations. Although models inevitably smooth terrain, the amount of smoothing depends on grid spacing. We investigate the behavior of the CBL in coarse- and fine-grid models applied to mountainous terrain by using output from an operational mesoscale modeling system and by performing quasi-idealized simulations. We investigate different areas in different climate zones using different CBL top derivation methods, grid spacing ratios, planetary boundary layer (PBL) schemes, and terrain smoothing. We find that when compared to fine-grid simulations, CBL depths are systematically larger in coarse domains over mountaintops, and to a lesser extent in valleys. On average, differences between coarse- and fine-domains over mountaintops could reach around 10%. In certain locations, differences could be as high as 25%. We attribute the result to terrain smoothing. Similarly, when using a coarse-grid CBL height (relative to mean sea level) interpolated using fine-grid terrain information, there is good agreement with fine-grid CBL depths over mountaintops and less agreement in valleys. Our results have implications for applications that use output from coarse model grids in mountainous terrain. These include inverse modeling studies (e.g., greenhouse gas budget estimations or integrated water vapor transport), PBL evaluation studies, climate research, air quality applications, planning and executing prescribed burns, and studies associated with precipitation over mountainous terrain.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7tm7g98

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-01-24T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:04:56.868326

Metadata language

eng; USA