Identification

Title

Application of an adiabatic WRF adjoint to the investigation of the May 2004 McMurdo, Antarctica, severe wind event

Abstract

The tangent linear and adjoint of an adiabatic version of the Weather Research and Forecasting (WRF) Model with its Advanced Research WRF (ARW) dynamic core have been developed. The source-to-source automatic differentiation tool [i.e., the Transformation of Algorithm (TAF) in FORTRAN] was used in the development. Tangent linear and adjoint checks of the developed adiabatic WRF adjoint modeling system (WAMS) were conducted, and all necessary correctness verification procedures were passed. As the first application, the adiabatic WAMS was used to study the adjoint sensitivity of a severe windstorm in Antarctica. Linearity tests indicated that an adjoint-based sensitivity study with the Antarctic Mesoscale Prediction System (AMPS) 90-km domain configuration for the windstorm is valid up to 24 h. The adjoint-based sensitivity calculation with adiabatic WAMS identified sensitive regions for the improvement of the 24-h forecast of the windstorm. It is indicated that the windstorm forecast largely relies on the model initial conditions in the area from the south part of the Trans-Antarctic Mountains to West Antarctica and between the Ross Ice Shelf and the South Pole. Based on the sensitivity analysis, the southerly or southeasterly wind at lower levels in the sensitivity region should be larger, the cyclone should be stronger, and the atmospheric stratification should be more stable over the north slope of the Trans-Antarctic Mountain to the Ross Ice Shelf, than the AMPS analyses. By constructing pseudo-observations in the sensitivity region using the gradient information of forecast windstorm intensity around McMurdo, the model initial conditions are revised with the WRF three-dimensional variational data assimilation, which leads to significant improvement in the prediction of the windstorm. An adjoint sensitivity study is an efficient way to identify sensitivity regions in order to collect more observations in the region for better forecasts in a specific aspect of interest.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7b56m14

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2008-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2008 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T15:55:53.560598

Metadata language

eng; USA