Generation and propagation of interia-gravity waves from vortex dipoles and jets
This study investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Two types of initially balanced and localized jets induced by vortex dipoles are examined here. These jets have their maximum strength either at the surface or in the middle levels of a uniformly stratified atmosphere. Within these dipoles, inertia - gravity waves with intrinsic frequencies 1-2 times the Coriolis parameter are simulated in the jet exit region. These gravity waves are nearly phase locked with the jets as shown in previous studies, suggesting spontaneous emission of the waves by the localized jets. A ray tracing technique is further employed to investigate the propagation effects of gravity waves. The ray tracing analysis reveals strong variation of wave characteristics along ray paths due to variations (particularly horizontal variations) in the propagating environment. The dependence of wave amplitude on the jet strength (and thus on the Rossby number of the flow) is examined through experiments in which the two vortices are initially separated by a large distance but subsequently approach each other and form a vortex dipole with an associated amplifying localized jet. The amplitude of the stationary gravity waves in the simulations with 90-km grid spacing increases as the square of the Rossby number (Ro), when Ro falls in a small range of 0.05-0.15, but does so significantly more rapidly when a smaller grid spacing is used.
document
http://n2t.net/ark:/85065/d7f76dmw
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2009-05-01T00:00:00Z
Copyright 2009 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:57:30.243618