Identification

Title

Revisiting sensitivity to horizontal grid spacing in convection-allowing models over the central and eastern United States

Abstract

Hourly accumulated precipitation forecasts from deterministic convection-allowing numerical weather prediction models with 3- and 1-km horizontal grid spacing were evaluated over 497 forecasts between 2010 and 2017 over the central and eastern conterminous United States (CONUS). While precipitation biases varied geographically and seasonally, 1-km model climatologies of precipitation generally aligned better with those observed than 3-km climatologies. Additionally, during the cool season and spring, when large-scale forcing was strong and precipitation entities were large, 1-km forecasts were more skillful than 3-km forecasts, particularly over southern portions of the CONUS where instability was greatest. Conversely, during summertime, when synoptic-scale forcing was weak and precipitation entities were small, 3- and 1-km forecasts had similar skill. These collective results differ substantially from previous work finding 4-km forecasts had comparable springtime precipitation forecast skill as 1- or 2-km forecasts over the central-eastern CONUS. Additional analyses and experiments suggest the greater benefits of 1-km forecasts documented here could be related to higher-quality initial conditions than in prior studies. However, further research is needed to confirm this hypothesis.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d70p135w

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:23:36.217435

Metadata language

eng; USA