Identification

Title

The potential benefits of handling mixture statistics via a bi‐Gaussian EnKF: Tests with all‐sky satellite infrared radiances

Abstract

The meteorological characteristics of cloudy atmospheric columns can be very different from their clear counterparts. Thus, when a forecast ensemble is uncertain about the presence/absence of clouds at a specific atmospheric column (i.e., some members are clear while others are cloudy), that column's ensemble statistics will contain a mixture of clear and cloudy statistics. Such mixtures are inconsistent with the ensemble data assimilation algorithms currently used in numerical weather prediction. Hence, ensemble data assimilation algorithms that can handle such mixtures can potentially outperform currently used algorithms. In this study, we demonstrate the potential benefits of addressing such mixtures through a bi-Gaussian extension of the ensemble Kalman filter (BGEnKF). The BGEnKF is compared against the commonly used ensemble Kalman filter (EnKF) using perfect model observing system simulated experiments (OSSEs) with a realistic weather model (the Weather Research and Forecast model). Synthetic all-sky infrared radiance observations are assimilated in this study. In these OSSEs, the BGEnKF outperforms the EnKF in terms of the horizontal wind components, temperature, specific humidity, and simulated upper tropospheric water vapor channel infrared brightness temperatures. This study is one of the first to demonstrate the potential of a Gaussian mixture model EnKF with a realistic weather model. Our results thus motivate future research toward improving numerical Earth system predictions though explicitly handling mixture statistics.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7w099vj

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:19:55.573599

Metadata language

eng; USA