Identification

Title

Feature-based diagnostic evaluation of global NWP forecasts

Abstract

With the resolution of global numerical weather prediction (NWP) models now typically between 10 and 20 km, forecasts are able to capture the evolution of synoptic features that are important drivers for significant surface weather. The position, timing, and intensity of jet cores, surface highs and lows, and changes in the behavior of these forecast features is explored using the Method for Object-based Diagnostic Evaluation (MODE) at the global scale. Previously this was only possible with a more subjective approach. The spatial aspects of the forecast features (objects) and their intensity can be assessed separately. The evolution of paired forecast analysis object attributes such as location and orientation differences, as well as area ratios, can be considered. The differences in the paired object attribute distributions from various model configurations were evaluated using the k-sample Anderson Darling (AD) test. Increases or decreases in hits, false alarms (forecast-not-observed), and misses (observed-not-forecast) features were also assessed. It was found that when focusing purely on the forecast features of interest, differences in seasonal spatial extent biases emerged, intensity biases varied as a function of analysis time, and changes in the attribute distributions could be detected but were largely insignificant, primarily due to sample size. As has been shown for kilometer-scale NWP, results from spatial verification methods are more in line with subjective assessment. This type of objective assessment provides a new dimension to the traditional assessment of global NWP, and provides output that is closer to the way in which forecasts are used.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7474ckg

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2016-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright YYYY American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:25:54.776334

Metadata language

eng; USA