Identification

Title

Lower thermospheric material transport via lagrangian coherent structures

Abstract

We show that inter-model variation due to under-constraint by observations impacts the ability to predict material transport in the lower thermosphere. Lagrangian coherent structures (LCSs), indicating regions of maximal separation (or convergence) in a time-varying flow, are derived in the lower thermosphere from models for several space shuttle water vapor plume events. We find that inter-model differences in thermospheric transport manifest in LCSs in a way that is more stringent than mean wind analyses. LCSs defined using horizontal flow fields from the Specified Dynamics version of the Whole Atmosphere Community Climate Model with thermosphere-ionosphere eXtension (SD-WACCMX) at 109 km altitude are compared to Global Ultraviolet Imager (GUVI) observations of the space shuttle main engine plume. In one case, SD-WACCMX predicts an LCS ridge to produce spreading not found in the observations. LCSs and tracer transport from SD-WACCMX and from data assimilative WACCMX (WACCMX + DART) are compared to each other and to GUVI observations. Differences in the modeled LCSs and tracer positions appear between SD-WACCMX and WACCMX + DART despite the similarity of mean winds. WACCMX + DART produces better tracer transport results for a July 2006 event, but it is unclear which model performs better in terms of LCS ridges. For a February 2010 event, when mean winds differ by up to 50 m/s between the models, differences in LCSs and tracer trajectories are even more severe. Low-pass filtering the winds up to zonal wavenumber 6 reduces but does not eliminate inter-model LCS differences. Inter-model alignment of LCSs improves at a lower 60 km altitude.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7rv0s5b

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-09-09T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:16:17.280915

Metadata language

eng; USA