Inertia-gravity waves spontaneously generated by jets and fronts, Part 1: Different baroclinic life cycles
The spontaneous generation of inertia–gravity waves in idealized life cycles of baroclinic instability is investigated using the Weather Research and Forecasting Model. Two substantially different life cycles of baroclinic instability are obtained by varying the initial zonal jet. The wave generation depends strongly on the details of the baroclinic wave's development. In the life cycle dominated by cyclonic behavior, the most conspicuous gravity waves are excited by the upper-level jet and are broadly consistent with previous simulations of O'Sullivan and Dunkerton. In the life cycle that is dominated by anticyclonic behavior, the most conspicuous gravity waves even in the stratosphere are excited by the surface fronts, although the fronts are no stronger than in the cyclonic life cycle. The anticyclonic life cycle also reveals waves in the lower stratosphere above the upper-level trough of the baroclinic wave; these waves have not been previously identified in idealized simulations. The sensitivities of the different waves to both resolution and dissipation are discussed.
document
https://n2t.org/ark:/85065/d7dr2vrd
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2007-07-01T00:00:00Z
Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-17T17:01:16.862241