CASES 99 - A comprehensive investigation of the stable nocturnal boundary layer
The Cooperative Atmosphere-Surface Exchange Study?1999 (CASES-99) refers to a field experiment carried out in southeast Kansas during October 1999 and the subsequent program of investigation. Comprehensive data, primarily taken during the nighttime but typically including the evening and morning transition, supports data analyses, theoretical studies, and state-of-the-art numerical modeling in a concerted effort by participants to investigate four areas of scientific interest. The choice of these scientific topics is motivated by both the need to delineate physical processes that characterize the stable boundary layer, which are as yet not clearly understood, and the specific scientific goals of the investigators. Each of the scientific goals should be largely achievable with the measurements taken, as is shown with preliminary analysis within the scope of three of the four scientific goals. Underlying this effort is the fundamental motivation to eliminate deficiencies in surface layer and turbulent diffusion parameterizations in atmospheric models, particularly where the Richardson number exceeds 0.25. This extensive nocturnal boundary layer (NBL) dataset is available to the scientific community at large, and the CASES-99 participants encourage all interested parties to utilize it. These preliminary analyses show that during nights where weak (< 2 m s-1) surface winds and strong static stability near the surface (exceeding 150 C km-1 to 20 m AGL) might otherwise indicate essentially nonturbulent conditions, that various, sometimes undefined, atmospheric phenomena can generate significant turbulent mixing, and therefore significant turbulent fluxes. In many cases, a jet structure will form in the NBL between 50 and 200 m AGL, resulting in strong shear between the surface and jet maximum. Consequently, though surface winds are weak, turbulence can be a significant feature in the stable NBL. Further, contrary to some previous work studying nocturnal jets over the Great Plains, the wind direction in the jet is often influenced by an inertial oscillation and seldom confined to the southerly quadrant (e.g., the Great Plains low-level jet).
document
http://n2t.net/ark:/85065/d75b03t4
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2002-04-01T00:00:00Z
Copyright 2002 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC ?108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T19:04:03.278248