Identification

Title

A ranking of hydrological signatures based on their predictability in space

Abstract

Hydrological signatures are now used for a wide range of purposes, including catchment classification, process exploration, and hydrological model calibration. The recent boost in the popularity and number of signatures has however not been accompanied by the development of clear guidance on signature selection. Here we propose that exploring the predictability of signatures in space provides important insights into their drivers and their sensitivity to data uncertainties and is hence useful for signature selection. We use three complementary approaches to compare and rank 15 commonly used signatures, which we evaluate in 600+ U.S. catchments from the Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) data set. First, we employ machine learning (random forests) to explore how attributes characterizing the climatic conditions, topography, land cover, soil, and geology influence (or not) the signatures. Second, we use simulations of the Sacramento Soil Moisture Accounting model to benchmark the random forest predictions. Third, we take advantage of the large sample of CAMELS catchments to characterize the spatial autocorrelation (using Moran's I) of the signature field. These three approaches lead to remarkably similar rankings of the signatures. We show (i) that signatures with the noisiest spatial pattern tend to be poorly captured by hydrological simulations; (ii) that their relationship to catchments attributes are elusive (in particular, they are not well explained by climatic indices); and (iii) that they are particularly sensitive to discharge uncertainties. We suggest that a better understanding of the drivers of hydrological signatures and a better characterization of their uncertainties would increase their value in hydrological studies.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7ht2s9c

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-11-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:19:25.838289

Metadata language

eng; USA