Identification

Title

Assessing the sensitivity of the Tropical Cyclone Boundary Layer to the parameterization of momentum flux in the Community Earth System Model

Abstract

Recent studies have demonstrated that high-resolution (similar to 25 km) Earth System Models (ESMs) have the potential to skillfully predict tropical cyclone (TC) occurrence and intensity. However, biases in ESM TCs still exist, largely due to the need to parameterize processes such as boundary layer (PBL) turbulence. Building on past studies, we hypothesize that the depiction of the TC PBL in ESMs is sensitive to the configuration of the PBL parameterization scheme, and that the targeted perturbation of tunable parameters can reduce biases. The Morris one-at-a-time (MOAT) method is implemented to assess the sensitivity of the TC PBL to tunable parameters in the PBL scheme in an idealized configuration of the Community Atmosphere Model, version 6 (CAM6). The MOAT method objectively identifies several parameters in an experimental version of the Cloud Layers Unified by Binormals (CLUBB) scheme that appreciably influence the structure of the TC PBL. We then perturb the parameters identified by the MOAT method within a suite of CAM6 ensemble simulations and find a reduction in model biases compared to observations and a high-resolution, cloud-resolving model. We demonstrate that the high-sensitivity parameters are tied to PBL processes that reduce turbulent mixing and effective eddy diffusivity, and that in CAM6 these parameters alter the TC PBL in a manner consistent with past modeling studies. In this way, we provide an initial identification of process-based input parameters that, when altered, have the potential to improve TC predictions by ESMs.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d75t3q6g

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2022 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:37:11.272937

Metadata language

eng; USA