Identification

Title

A fully compressible nonhydrostatic deep-atmosphere equations solver for MPAS

Abstract

A solver for the nonhydrostatic deep-atmosphere equations of motion is described that extends the capabilities of the Model for Prediction Across Scales-Atmosphere (MPAS-A) beyond the existing shallow-atmosphere equations solver. The discretization and additional terms within this extension maintain the C-grid staggering, hybrid height vertical coordinate, and spherical centroidal Voronoi mesh used by MPAS, and also preserve the solver's conservation properties. Idealized baroclinic wave test results, using Earth-radius and reduced-radius sphere configurations, verify the correctness of the solver and compare well with published results from other models. For these test cases, the time evolution of the maximum horizontal wind speed, and the total energy and its components, are presented as additional solution metrics that may allow for further discrimination in model comparisons. The test case solutions are found to be sensitive to the configuration of dissipation mechanisms in MPAS-A, and many of the differences among models in previously published test case solutions appear to arise because of their differing dissipation configurations. For the deep-atmosphere reduced-radius sphere test case, small-scale noise in the numerical solution was found to arise from the analytic initialization that contains unstable lapse rates in the tropical lower troposphere. By adjusting a parameter in this initialization, the instability is removed and the unphysical large-scale overturning no longer occurs. Inclusion of the deep-atmosphere capability in the MPAS-A solver increases the dry dynamics cost by less than 5% on CPU-based architectures, and configuration of either the shallow- or deep-atmosphere equations is controlled by a simple switch.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7dn48f2

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2021-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2021 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:29:12.850496

Metadata language

eng; USA