Identification

Title

Modeling tillage and manure application on soil phosphorous loss under climate change

Abstract

Phosphorus (P) losses from non-point sources into receiving water bodies play a significant role in eutrophication. Given their failure to adequately control eutrophication in the Lake Erie, conservation recommendations for agricultural watersheds should be reconsidered, particularly under climate change. Using the Environmental Policy Integrated Climate model, the potential impacts on crop yield, surface runoff, tile drainage, and relevant dissolved reactive phosphorus (DRP) losses from manure-amended corn-soybean rotation plots in the Lake Erie basin were estimated for six tillage methods with different mixing efficiencies and manure broadcast application. These were investigated under twelve different regional and global future climate simulations. Tillage alone proved to have only a minor impact on mean corn yield (+/- 2%). Climate change led to large uncertainties under the single tillage treatment. As a result of the combined effects of biogeochemical processes (e.g., supply) and hydrological (e.g., transport), strong negative relationships (R-2 = 0.98) were found between tillage mixing efficiency and DRP loss in surface runoff, tile drainage, and total DRP loss. The impacts of combined manure application (broadcast) and tillage on crop yield and flow volume were similar as those of tillage alone. With respect to total DRP losses, the effects of labile P content change outweighed those of surface runoff or tile drainage change (hydrologic). This resulted in a change in total DRP losses ranging from - 60% to + 151%, with being closely correlated with decreasing tillage mixing efficiency (R-2 = 0.94) from moldboard to no-till. Therefore, rotational tillage should be considered for DRP loss reduction and energy saving.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7c82dv7

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T16:06:05.289115

Metadata language

eng; USA