Identification

Title

An examination of the impact of grid spacing on WRF simulations of wintertime precipitation in the Mid-Atlantic United States

Abstract

A large set of deterministic and ensemble forecasts was produced to identify the optimal spacing for forecasting U.S. East Coast snowstorms. WRF forecasts were produced on cloud-allowing (similar to 1-km grid spacing) and convection-allowing (3-4 km) grids, and compared against forecasts with parameterized convection (> similar to 10 km). Performance diagrams were used to evaluate 19 deterministic forecasts from the winter of 2013-14. Ensemble forecasts of five disruptive snowstorms spanning the years 2015-18 were evaluated using various methods to evaluate probabilistic forecasts. While deterministic forecasts using cloud-allowing grids were not better than convection-allowing forecasts, both had lower bias and higher success ratios than forecasts with parameterized convection. All forecasts were underdispersive. Nevertheless, forecasts on the higher-resolution grids were more reliable than those with parameterized convection. Forecasts on the cloud-allowing grid were best able to discriminate areas that received heavy snow and those that did not, while the forecasts with parameterized convection were least able to do so. It is recommended to use convection-resolving and (if computationally possible) to use cloud-allowing forecast grids when predicting East Coast winter storms.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7b27zp4

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-12-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:28:37.873108

Metadata language

eng; USA