Identification

Title

A general N-moment normalization method for deriving raindrop size distribution scaling relationships

Abstract

A general drop size distribution (DSD) normalization method is formulated in terms of generalized power series relating any DSD moment to any number and combination of reference moments. This provides a consistent framework for comparing the variability of normalized DSD moments using different sets of reference moments, with no explicit assumptions about the DSD functional form (e.g., gamma). It also provides a method to derive any unknown moment plus an estimate of its uncertainty from one or more known moments, which is relevant to remote sensing retrievals and bulk microphysics schemes in weather and climate models. The approach is applied to a large dataset of disdrometer-observed and bin microphysics-modeled DSDs. As expected, the spread of normalized moments decreases as the number of reference moments is increased, quantified by the logarithmic standard deviation of the normalized moments, sigma. Averaging sigma for all combinations of reference moments and normalized moments of integer order 0-10, 42.9%, 81.3%, 93.7%, and 96.9% of spread are accounted for applying one-, two-, three-, and four-moment normalizations, respectively. Thus, DSDs can be well characterized overall using three reference moments, whereas adding a fourth reference moment contributes little independent information. The spread of disdrometer-observed DSD moments from uncertainty associated with drop count statistics generally lies between values of sigma using two- and three-moment normalizations. However, this uncertainty has little impact on the derived DSD scaling relationships or sigma when considered.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7f76gmq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2019-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2019 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:31:12.200018

Metadata language

eng; USA