Experiments in rainfall estimation with a polarimetric radar in a subtropical environment
A unique dataset consisting of high-resolution polarimetric radar measurements and dense rain gauge and disdrometer observations collected in east-central Florida during the summer of 1998 was examined. Comparison of the radar measurements and radar parameters computed from the disdrometer observations supported previous studies, which indicate that oscillating drops in the free atmosphere have more spherical apparent shapes in the mean than equilibrium shapes. Radar–disdrometer comparisons improved markedly when using an empirical axis ratio relation developed from observational studies and representing more spherical drop shapes. Fixed-form power-law rainfall estimators for radar reflectivity (ZH), specific differential phase (KDP), specific differential phase–differential reflectivity (KDP, ZDR), and radar reflectivity–differential reflectivity (ZH, ZDR) were then determined using the disdrometer observations. Relations were produced for both equilibrium shapes and the empirical axis ratios. Polarimetric rainfall estimators based on more spherical shapes gave significantly improved performance. However, the improvement was largely in bias mitigation. Rainfall estimates with the ZH–ZDR measurement pair had the highest correlation with rain gauge observations, the smallest range in bias factors from storm to storm, and the smallest root-mean-square error.
document
http://n2t.net/ark:/85065/d7jd4xbd
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2002-06-01T00:00:00Z
Copyright 2002 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:07:48.795449