Identification

Title

Impact of volcanic eruptions on CMIP6 decadal predictions: A multi-model analysis

Abstract

In recent decades, three major volcanic eruptions of different intensity have occurred (Mount Agung in 1963, El Chich oacute;n in 1982 and Mount Pinatubo in 1991), with reported climate impacts on seasonal to decadal timescales that could have been potentially predicted with accurate and timely estimates of the associated stratospheric aerosol loads. The Decadal Climate Prediction Project component C (DCPP-C) includes a protocol to investigate the impact of volcanic aerosols on the climate experienced during the years that followed those eruptions through the use of decadal predictions. The interest of conducting this exercise with climate predictions is that, thanks to the initialisation, they start from the observed climate conditions at the time of the eruptions, which helps to disentangle the climatic changes due to the initial conditions and internal variability from the volcanic forcing.The protocol consists of repeating the retrospective predictions that are initialised just before the last three major volcanic eruptions but without the inclusion of their volcanic forcing, which are then compared with the baseline predictions to disentangle the simulated volcanic effects upon climate. We present the results from six Coupled Model Intercomparison Project Phase 6 (CMIP6) decadal prediction systems. These systems show strong agreement in predicting the well-known post-volcanic radiative effects following the three eruptions, which induce a long-lasting cooling in the ocean. Furthermore, the multi-model multi-eruption composite is consistent with previous work reporting an acceleration of the Northern Hemisphere polar vortex and the development of El Ni ntilde;o conditions the first year after the eruption, followed by a strengthening of the Atlantic Meridional Overturning Circulation the subsequent years. Our analysis reveals that all these dynamical responses are both model- and eruption-dependent.A novel aspect of this study is that we also assess whether the volcanic forcing improves the realism of the predictions. Comparing the predicted surface temperature anomalies in the two sets of hindcasts (with and without volcanic forcing) with observations we show that, overall, including the volcanic forcing results in better predictions. The volcanic forcing is found to be particularly relevant for reproducing the observed sea surface temperature (SST) variability in the North Atlantic Ocean following the 1991 eruption of Pinatubo.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7vm4hg3

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2024-04-26T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T20:02:42.246667

Metadata language

eng; USA