Identification

Title

Electrodynamics of the equatorial evening ionosphere: 1. Importance of winds in different regions

Abstract

The importance of winds at different altitudes and latitudes for the electrodynamics of the low-latitude evening ionosphere is examined with a model of the global coupled ionosphere-thermosphere system. The model reproduces the main observed features of the evening equatorial plasma vortex and the prereversal enhancement (PRE) of the vertical drift. The electrodynamics is driven primarily by the zonal wind forced by the diurnally varying zonal pressure-gradient force. The zonal wind lags the zonal pressure-gradient force owing to inertia. When ion drag is important, the time lag of the wind behind the pressure gradient force is shortened, and the high-altitude evening wind turns eastward earlier than the wind at lower altitudes, where ion drag is less important. Therefore, a vertical shear of the zonal wind tends to develop at altitudes around the transition between small and large ion drag at the bottom of the F region. This wind shear is closely associated with the vertical shear in the zonal convection velocity that is part of the evening plasma vortex. Unlike previous studies, we find that the winds driving the PRE lie mainly on field lines with apexes above the peak of the equatorial F layer, field lines that extend in magnetic latitude out to nearly 30° and encompass the entire evening equatorial ionization anomaly region. Contrary to previous suggestions, the westward convection in the bottomside of the evening plasma vortex is found to weaken, rather than strengthen, the PRE. Daytime winds have relatively little influence on the low-latitude evening electrodynamics.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d70r9qkf

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2015-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2015 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-12T00:01:54.808727

Metadata language

eng; USA