Identification

Title

Using A-train observations to evaluate East Pacific cloud occurrence and radiative effects in the Community Atmosphere Model

Abstract

Using information from the A-Train satellites, the properties and radiative effects of eastern Pacific Ocean boundary layer clouds are evaluated in the Community Atmosphere Model, version 5 (CAM5), from the summer of 2007 and 2008. The cloud microphysical properties are inferred using measurements from CloudSat and CALIPSO (CC) that are then used to calculate the broadband radiative flux profiles. Accounting appropriately for sampling differences between the measurements and the simulation, evidence of the "too few, too bright'' low cloud bias is found in CAM5. Single-layer low clouds have a frequency of occurrence of 42% from CC, as compared with just 29% in CAM5, and the averaged cloud radiative kernel (CRK) for the model shows stronger cooling. For stratocumulus in particular, the cooling in the model CRK is larger by a factor of 2 relative to the observations, implying an overly sensitive tropical low cloud feedback. Differences in the day/night occurrence of stratocumulus help to explain some of the difference in the CRK. The cloud-type microphysics for liquid clouds is represented reasonably well by the model, with a tendency for smaller water paths and smaller effective radii. Overall, the occurrence and CRK have partially compensating errors such that the net cooling at the top of the atmosphere for eastern Pacific low clouds is -43 W m(-2) in CAM5, as compared with -32 W m(-2) from CC. The cooling effect in the model is accomplished by fewer low clouds with a narrower range of properties, as compared with more clouds with a broader range of properties in the observation-based dataset.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d73x8b0j

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-07-15T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:17:37.043319

Metadata language

eng; USA