Identification

Title

Depth matters: Lake bathymetry selection in numerical weather prediction systems

Abstract

Lake surface conditions are critical for representing lake‐atmosphere interactions in numerical weather prediction. The Community Land Model's 1‐D lake component (CLM‐lake) is part of NOAA's High‐Resolution Rapid Refresh (HRRR) 3‐km weather/earth‐system model, which assumes that virtually all the two thousand lakes represented in CONUS have distinct (for each lake) but spatially uniform depth. To test the sensitivity of CLM‐lake to bathymetry, we ran CLM‐lake as a stand‐alone model for all of 2019 with two bathymetry data sets for 23 selected lakes: the first had default (uniform within each lake) bathymetry while the second used a new, spatially varying bathymetry. We validated simulated lake surface temperature (LST) with both remote and in situ observations to evaluate the skill of both runs and also intercompared modeled ice cover and evaporation. Though model skill varied considerably from lake to lake, using the new bathymetry resulted in marginal improvement over the default. The more important finding is the influence bathymetry has on modeled LST (i.e., differences between model simulations) where lake‐wide LST deviated as much as 10°C between simulations and individual grid cells experienced even greater departures. This demonstrates the sensitivity of surface conditions in atmospheric models to lake bathymetry. The new bathymetry also improved lake depths over the (often too deep) previous value assumed for unknown‐depth lakes. These results have significant implications for numerical weather prediction, especially in regions near large lakes where lake surface conditions often influence the state of the atmosphere via thermal regulation and lake effect precipitation.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d74j0kg6

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:55:16.639178

Metadata language

eng; USA