Identification

Title

Evaluating seasonal orographic precipitation in the interior Western United States using gauge data, gridded precipitation estimates, and a regional climate simulation

Abstract

There are several high-resolution (1-12 km) gridded precipitation datasets covering the interior western United States. This study cross validates seasonal orographic precipitation estimates from the Snowpack Telemetry (SNOTEL) network; the national hourly multisensor precipitation analysis Stage IV dataset (NCEP IV); four gauge-driven gridded datasets; and a 10-yr, 4-km, convection-permitting Weather Research and Forecasting (WRF) Model simulation. The NCEP IV dataset, which uses the NEXRAD network and precipitation gauges, is challenged in this region because of blockage and lack of low-level radar coverage in complex terrain. The gauge-driven gridded datasets, which statistically interpolate gauge measurements over complex terrain to better estimate orographic precipitation, are challenged by the highly heterogeneous, weather-dependent nature of precipitation in complex terrain at scales finer than can be resolved by the gauge network, such as the SNOTEL network. Gauge-driven gridded precipitation estimates disagree in areas where SNOTEL gauges are sparse, especially at higher elevations. The WRF simulation captures wintertime orographic precipitation distribution and amount well, and biases over specific mountain ranges are identical to those in an independentWRF simulation, suggesting that these biases are at least partly due to errors in the snowfall measurements or the gridding of these measurements. The substantial disagreement between WRF and the gridded datasets over some mountains may motivate reevaluation of some gauge records and installation of new SNOTEL gauges in regions marked by large discrepancies between modeled and gaugedriven precipitation estimates.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7qz2dm3

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 American Meteorological Society (AMS).

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:22:57.655109

Metadata language

eng; USA