Identification

Title

Model improvement via systematic investigation of physics tendencies

Abstract

Deficiencies in forecast models commonly stem from inadequate representation of physical processes; yet, improvement to any single physics component within a model may lead to degradations in other physics components or the model as a whole. In this study, a systematic investigation of physics tendencies is demonstrated to help identify and correct compensating sources of model biases. The model improvement process is illustrated by addressing a commonly known issue in warm-season rainfall forecasts from parameterized convection models: the misrepresentation of the diurnal precipitation cycle over land, especially in its timing. Recent advances in closure assumptions in mass-flux cumulus schemes have made remarkable improvements in this respect. Here, we investigate these improvements in the representation of the diurnal precipitation cycle for a spring period over the United States, and how changes to the cumulus scheme impact the model climate and the behavior of other physics schemes. The modified cumulus scheme improves both the timing of the diurnal precipitation cycle and reduces midtropospheric temperature and moisture biases. However, larger temperature and moisture biases are found in the boundary layer as compared to a predecessor scheme, along with an overamplification of the diurnal precipitation cycle, relative to observations. Guided by a tendency analysis, we find that biases in the diurnal amplitude of the precipitation cycle in our simulations, along with temperature and moisture biases in the boundary layer, originate from the land surface model.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7s75khb

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-02-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:22:00.775426

Metadata language

eng; USA