Identification

Title

Revisiting the role of SMAP soil moisture retrievals in WRF-Chem dust emission simulations over the western U.S.

Abstract

Having good replication of the soil moisture evolution is desirable to properly simulate the dust emissions and atmospheric dust load because soil moisture increases the cohesive forces of soil particles, modulating the wind erosion threshold above which emissions occur. To reduce errors, one can use soil moisture retrievals from space-borne microwave radiometers. Here, we explore the potential of inserting soil moisture retrievals from the Soil Moisture Active Passive (SMAP) satellite into the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to improve dust simulations. We focus our analysis on the contiguous U.S. due to the presence of important dust sources and good observational networks. Our analysis extends over the first year of SMAP retrievals (1 April 2015–31 March 2016) to cover the annual soil moisture variability and go beyond extreme events, such as dust storms, in order to provide a statistically robust characterization of the potential added value of the soil moisture retrievals. We focus on the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model from the Air Force Weather Agency (GOCART-AFWA) dust emission parameterization that represents soil moisture modulations of the wind erosion threshold with a parameterization developed by fitting observations. The dust emissions are overestimated by the GOCART-AFWA parameterization and result in an overestimation of the aerosol optical depth (AOD). Sensitivity experiments show that emissions reduced to 25% in the GOCART-AFWA simulations largely reduced the AOD bias over the Southwest and lead to better agreement with the standard WRF-Chem parameterization of dust emissions (GOCART) and with observations. Comparisons of GOCART-AFWA simulations with emissions reduced to 25% with and without SMAP soil moisture insertion show added value of the retrievals, albeit small, over the dust sources. These results highlight the importance of accurate dust emission parameterizations when evaluating the impact of remotely sensed soil moisture data on numerical weather prediction models.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.net/ark:/85065/d74b35rw

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2025-04-10T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

<span style="font-family:Arial;font-size:10pt;font-style:normal;" data-sheets-root="1">Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</span>

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-10T19:47:31.232134

Metadata language

eng; USA