Identification

Title

An investigation of the connections among convection, clouds, and climate sensitivity in a global climate model

Abstract

This study explores connections between process-level modeling of convection and global climate model (GCM) simulated clouds and cloud feedback to global warming through a set of perturbed-physics and perturbed sea surface temperature experiments. A bulk diagnostic approach is constructed, and a set of variables is derived and demonstrated to be useful in understanding the simulated relationship. In particular, a novel bulk quantity, the convective precipitation efficiency or equivalently the convective detrainment efficiency, is proposed as a simple measure of the aggregated properties of parameterized convection important to the GCM simulated clouds. As the convective precipitation efficiency increases in the perturbed-physics experiments, both liquid and ice water path decrease, with low and middle cloud fractions diminishing at a faster rate than high cloud fractions. This asymmetry results in a large sensitivity of top-of-atmosphere net cloud radiative forcing to changes in convective precipitation efficiency in this limited set of models. For global warming experiments, intermodel variations in the response of cloud condensate, low cloud fraction, and total cloud radiative forcing are well explained by model variations in response to total precipitation (or detrainment) efficiency. Despite significant variability, all of the perturbed-physics models produce a sizable increase in precipitation efficiency to warming. A substantial fraction of the increase is due to its convective component, which depends on the parameterization of cumulus mixing and convective microphysical processes. The increase in convective precipitation efficiency and associated change in convective cloud height distribution owing to warming explains the increased cloud feedback and climate sensitivity in recently developed Geophysical Fluid Dynamics Laboratory GCMs. The results imply that a cumulus scheme using fractional removal of condensate for precipitation and inverse calculation of the entrainment rate tends to produce a lower climate sensitivity than a scheme using threshold removal for precipitation and the entrainment rate formulated inversely dependent on convective depth.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7gm888m

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2014-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2014 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:09:33.206353

Metadata language

eng; USA