Aircraft observations of cumulus microphysics ranging from the tropics to midlatitudes: Implications for a "new" secondary ice process
In situ data collected by three research aircraft in four geographical locations are analyzed to determine the relationship between cloud-base temperature, drop size distribution, and the development of supercooled water drops and ice in strong updraft cores of convective clouds. Data were collected in towering cumulus and feeder cells in the Caribbean, over the Gulf of Mexico, over land near the Gulf Coast, over land in the southeastern United States, and the high plains in Colorado and Wyoming. Convective clouds in the Caribbean, over the Gulf of Mexico and its coast, and over the southeastern United States all develop millimeter-diameter supercooled drops in updraft cores. Clouds over the high plains do not generate supercooled large drops, and rarely are drops > 70 mu m observed in updraft cores. Commensurate with the production of supercooled large drops, ice is generated and rapidly glaciates updraft cores through a hypothesized secondary ice process that is based on laboratory observations of large drops freezing and emitting tiny ice particles. Clouds over the high plains do not experience the secondary ice process and significant concentrations of supercooled liquid in the form of small drops are carried much higher (up to -35.5 degrees C) in the updraft cores. An empirical relationship that estimates the maximum level to which supercooled liquid water will be transported, based on cloud-base drop size distribution and temperature, is developed. Implications have applications for modeling the transport of water vapor and particles into the upper troposphere and hygroscopic seeding of cumulus clouds.
document
http://n2t.net/ark:/85065/d7v127bc
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2017-09-01T00:00:00Z
Copyright 2017 American Meteorological Society (AMS).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:27:24.508847