Identification

Title

Experimental implementation of an ensemble adjustment filter for an intermediate ENSO model

Abstract

The assimilation of sea surface temperature (SST) anomalies into a coupled ocean–atmosphere model of the tropical Pacific is investigated using an ensemble adjustment Kalman filter (EAKF). The intermediate coupled model used here is the operational version of the Zebiak-Cane model, called LDEO5. The assimilation is applied as a means of estimating the true state of the system in the presence of incomplete observations of the state. In the first part of this study assimilation is performed under the "perfect model" assumption, where SST observations are synthetically derived from a trajectory of the model. The focus is on how and why changes in the filter parameters (ensemble size, covariance localization, and covariance inflation) affect the quality of the analysis. It is shown that isotropic covariance localization does not benefit the analysis even when a small number of ensemble members are used. These results suggest that destruction of the "balance" between variables caused by localization is more detrimental than spurious correlation due to small ensemble size. In the second part of this study the EAKF is used to assimilate an independent dataset of SST observations. The EAKF/Zebiak-Cane assimilation system is able to correctly estimate the phase and intensity of ENSO, as measured by the average SST anomaly in the eastern equatorial Pacific. A comparison of the analysis herein to independent wind stress and thermocline depth datasets suggests that even with the assimilation of only SST observations it is possible to reproduce over 70% of the interannual variability of thermocline depth in the eastern equatorial Pacific and off the coast of the Philippine Islands. The interannual variability of zonal wind stress in the central and western equatorial Pacific is also well correlated with independent observations (R > 0.75).

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7639pz8

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2007-09-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Law (17 USC, as revised by P.L. 94-553) does not require the Society's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statements, requires written permission or license from the AMS. Additional details are provided in the AMS Copyright Policies, available from the AMS at 617-227-2425 or amspubs@ametsoc.org. Permission to place a copy of this work on this server has been provided by the AMS. The AMS does not guarantee that the copy provided here is an accurate copy of the published work.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-17T17:00:40.266858

Metadata language

eng; USA