Identification

Title

Understanding the persistence of sea surface temperature anomalies in midlatitudes

Abstract

An extension of the simple stochastic climate model of Frankignoul and Hasselman that includes the effects of seasonal variations in upper-ocean mixed layer depth upon the persistence of winter sea surface temperature (SST) anomalies is proposed. Seasonal variations in mixed layer depth allow for the "reemergence mechanism," whereby thermal anomalies stored in the deep winter mixed layer persist at depth through summer and become partially reentrained into the mixed layer during the following winter. In this way, SST anomalies can recur from winter to winter without persisting through the intervening summer. Reformulating the simple stochastic climate model in terms of an effective ocean thermal capacity given by the depth of the winter mixed layer, thereby implicitly taking into account reemergence, is shown to provide a favorable fit to the observed winter-to-winter SST autocorrelations in the North Atlantic and Pacific, and represents a considerable improvement over the original model. The extended model also compares favorably with results from an entraining bulk ocean mixed layer model coupled to an atmospheric general circulation model. The authors propose that the extended model be adopted as the new "null hypothesis" for interannual SST variability in middle and high latitudes.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d79s1rmd

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2003-01-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2003 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be "fair use" under Section 107 of the U.S. Copyright Act or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS's permission. Republication, systematic reproduction, posting in electronic form on servers, or other uses of this material, except as exempted by the above statement, requires written permission or a license form the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at (http://www.ametsoc.org/AMS) or from the AMS at 617-227-2425 or copyright@ametsoc.org.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:08:43.374196

Metadata language

eng; USA