Identification

Title

Observations of upper-tropospheric temperature inversions in the Indian monsoon and their links to convectively forced quasi-stationary Kelvin waves

Abstract

High-vertical-resolution temperature measurements from GPS radio occultation data show frequent upper-tropospheric inversions over the equatorial Indian Ocean during the summer monsoon season. Each year, around 30% of profiles in this region have temperature inversions near 15 km during the monsoon season, peaking during July–September. This work describes the space–time behavior of these inversions, and their links to transient deep convection. The Indian Ocean inversions occur episodically several times each summer, with a time scale of 1–2 weeks, and are quasi stationary or slowly eastward moving. Strong inversions are characterized by cold anomalies in the upper-troposphere (12–15 km), warm anomalies in the tropopause layer (16–18 km), and strong zonal wind anomalies that are coherent with temperature anomalies. Temperature and wind anomalies are centered over the equator and show a characteristic eastward phase tilt with height with a vertical wavelength near 5 km, consistent with a Kelvin wave structure. Composites of outgoing longwave radiation (OLR) show that strong inversions are linked to enhanced deep convection over the equatorial Indian Ocean, preceding the inversions by ~2–6 days. These characteristics suggest that the inversions are linked to convectively forced Kelvin waves, which are Doppler shifted by the easterly monsoonal winds such that they remain quasi stationary in the equatorial Indian Ocean. These large-scale waves influence circulation on the equatorial side of the Indian monsoon anticyclone; they may provide a positive feedback to the underlying convection, and are possibly linked with regions of shear-induced turbulence.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d71c213r

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2020-07-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2020 American Meteorological Society

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:17:20.966664

Metadata language

eng; USA