Identification

Title

On the scaling of shear-driven entrainment: A DNS study

Abstract

The deepening of a shear-driven turbulent layer penetrating into a stably stratified quiescent layer is studied using direct numerical simulation (DNS). The simulation design mimics the classical laboratory experiments by Kato & Phillips (J. Fluid Mech., vol. 37, 1969, pp. 643-655) in that it starts with linear stratification and applies a constant shear stress at the lower boundary, but avoids sidewall and rotation effects inherent in the original experiment. It is found that the layers universally deepen as a function of the square root of time, independent of the initial stratification and the Reynolds number of the simulations, provided that the Reynolds number is large enough. Consistent with this finding, the dimensionless entrainment velocity varies with the bulk Richardson number as Ri−1/2. In addition, it is observed that all cases evolve in a self-similar fashion. A self-similarity analysis of the conservation equations shows that only a square root growth law is consistent with self-similar behaviour.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d70r9q8d

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-10-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 Cambridge University Press.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:53:49.487997

Metadata language

eng; USA