Identification

Title

Probabilistic prediction of tropical cyclone intensity with an analog ensemble

Abstract

An analog ensemble (AnEn) technique is applied to the prediction of tropical cyclone (TC) intensity (i. e., maximum 1-min averaged 10-m wind speed). The AnEn is an inexpensive, naturally calibrated ensemble prediction of TC intensity derived from a training dataset of deterministic Hurricane Weather Research and Forecasting (HWRF; 2015 version) Model forecasts. In this implementation of the AnEn, a set of analog forecasts is generated by searching an HWRF archive for forecasts sharing key features with the current HWRF forecast. The forecast training period spans 2011-15. The similarity of a current forecast with past forecasts is estimated using predictors derived from the HWRF reforecasts that capture thermodynamic and kinematic properties of a TC's environment and its inner core. Additionally, the value of adding a multimodel intensity consensus forecast as an AnEn predictor is examined. Once analogs are identified, the verifying intensity observations corresponding to each analog HWRF forecast are used to produce the AnEn intensity prediction. In this work, the AnEn is developed for both the eastern Pacific and Atlantic Ocean basins. The AnEn's performance with respect to mean absolute error (MAE) is compared with the raw HWRF output, the official National Hurricane Center (NHC) forecast, and other top-performing NHC models. Also, probabilistic intensity forecasts are compared with a quantile mapping model based on the HWRF's intensity forecast. In terms of MAE, the AnEn outperforms HWRF in the eastern Pacific at all lead times examined and up to 24-h lead time in the Atlantic. Also, unlike traditional dynamical ensembles, the AnEn produces an excellent spread-skill relationship.

Resource type

document

Resource locator

Unique resource identifier

code

https://n2t.org/ark:/85065/d7vx0kbq

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2018-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2018 American Meteorological Society.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2025-07-11T19:38:19.211140

Metadata language

eng; USA