Estimating the maximum vertical velocity at the leading edge of a density current
The maximum upward vertical velocity at the leading edge of a density current is commonly <10 m s(-1). Studies of the vertical velocity, however, are relatively few, in part owing to the dearth of high-spatiotemporal-resolution observations. During the Plains Elevated Convection At Night (PECAN) field project, a mobile Doppler lidar measured a maximum vertical velocity of 13 m s(-1) at the leading edge of a density current created by a mesoscale convective system during the night of 15 July 2015. Two other vertically pointing instruments recorded 8 m s(-1) vertical velocities at the leading edge of the density current on the same night. This study describes the structure of the density current and attempts to estimate the maximum vertical velocity at their leading edges using the following properties: the density current depth, the slope of its head, and its perturbation potential temperature. The method is then be applied to estimate the maximum vertical velocity at the leading edge of density currents using idealized numerical simulations conducted in neutral and stable atmospheres with resting base states and in neutral and stable atmospheres with vertical wind shear. After testing this method on idealized simulations, this method is then used to estimate the vertical velocity at the leading edge of density currents documented in several previous studies. It was found that the maximum vertical velocity can be estimated to within 10%-15% of the observed or simulated maximum vertical velocity and indirectly accounts for parameters including environmental wind shear and static stability.
document
http://n2t.net/ark:/85065/d7fb568k
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2020-11-01T00:00:00Z
Copyright 2020 American Meteorological Society (AMS).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2023-08-18T18:13:28.274984