Identification

Title

Probing into the impact of 3DVAR assimilation of surface PM₁₀ observations over China using process analysis

Abstract

The capability of assimilating surface PM₁₀ (particulate matter with diameters less than 10 µm) observations has been developed within the National Centers for Environmental Prediction Gridpoint Statistical Interpolation three-dimensional variational (3DVAR) data assimilation (DA) system. It provides aerosol analyses for the Goddard Chemistry Aerosol Radiation and Transport aerosol scheme within the Weather Research and Forecasting/Chemistry model. Control and assimilation experiments were performed for June 2011 over China to explore in detail the impact of assimilating surface PM₁₀. In the assimilation experiment, analyses were produced every 6 h to adjust the mass concentrations of different aerosol species. The statistical results from two parallel experiments demonstrate that the assimilation of surface PM₁₀ observations can significantly reduce the uncertainty of initial aerosol fields and effectively improve the subsequent aerosol forecasts for at least 12 h. However, the benefit from the assimilation of PM₁₀ diminishes rapidly with forecast range. Process analysis for PM₁₀ formation indicates that the rapidly diminishing DA impact on aerosol forecasts, especially in early forecast hours, was dominated by vertical mixing with an additional contribution from advection. Both processes were mainly related to unbalanced aerosol fields in the horizontal and vertical after assimilating surface observations. These findings illustrate the importance of adjusting aerosol emission rates and the initial aerosol vertical profile.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7sq918x

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2013-06-27T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2013 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:50:12.185676

Metadata language

eng; USA