Identification

Title

The response of the Walker circulation to Last Glacial Maximum forcing: Implications for detection in proxies

Abstract

The response of the Walker circulation to Last Glacial Maximum (LGM) forcing is analyzed using an ensemble of six coordinated coupled climate model experiments. The tropical atmospheric overturning circulation strengthens in all models in a manner that is dictated by the response of the hydrological cycle to tropical cooling. This response arises from the same mechanism that has been found to explain the weakening of the tropical circulation in response to anthropogenic global warming but with opposite sign. Analysis of the model differences shows that the ascending branch of the Walker circulation strengthens via this mechanism but vertical motion also weakens over areas of the Maritime Continent exposed due to lower sea level. Each model exhibits a different balance between these two mechanisms, and the result is a Pacific Walker circulation response that is not robust. Further, even those models that simulate a stronger Walker circulation during the LGM do not simulate clear patterns of surface cooling, such as La Niña-like cooling or enhanced equatorial cooling, as proposed by previous studies. In contrast, the changes in the Walker circulation have a robust and distinctive signature on the tilt of the equatorial thermocline, as expected from zonal momentum balance. The changes in the Walker circulation also have a clear signature on the spatial pattern of the precipitation changes. A reduction of the east-west salinity contrast in the Indian Ocean is related to the precipitation changes resulting from a weakening of the Indian Walker circulation. These results indicate that proxies of thermocline depth and sea surface salinity can be used to detect actual LGM changes in the Pacific and Indian Walker circulations, respectively, and help to constrain the sensitivity of the Walker circulation to tropical cooling.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d78g8m9z

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2011-09-26T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2011 American Geophysical Union.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:52:31.844083

Metadata language

eng; USA