Identification

Title

Reducing uncertainty in projections of terrestrial carbon uptake

Abstract

Carbon uptake by the oceans and terrestrial biosphere regulates atmospheric carbon dioxide concentration and affects Earth's climate, yet global carbon cycle projections over the next century are highly uncertain. Here, we quantify and isolate the sources of projection uncertainty in cumulative ocean and terrestrial carbon uptake over 2006-2100 by performing an analysis of variance on output from an ensemble of 12 Earth System Models. Whereas uncertainty in projections of global ocean carbon accumulation by 2100 is <100 Pg C and driven primarily by emission scenario, uncertainty in projections of global terrestrial carbon accumulation by 2100 is >160 Pg C and driven primarily by model structure. To statistically reduce uncertainty in terrestrial carbon projections, we devise schemes to weight the models based on their ability to represent the observed change in carbon accumulation over 1959-2005. The weighting schemes incrementally reduce uncertainty to a minimum value of 125 Pg C in 2100, but this reduction requires an impractical observational constraint. We suggest that a focus on reducing multimodel spread may not make terrestrial carbon cycle projections more reliable, and instead advocate for accurate observations, improved process understanding, and a multitude of modeling approaches.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7g162m0

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2017-04-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright 2017 IOP Publishing Ltd.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T19:14:32.687633

Metadata language

eng; USA