Improved diagnosis of precipitation type with LightGBM machine learning
Existing precipitation-type algorithms have difficulty discerning the occurrence of freezing rain and ice pellets. These inherent biases are not only problematic in operational forecasting but also complicate the development of model-based precipitation-type climatologies. To address these issues, this paper introduces a novel light gradient-boosting machine (LightGBM)-based machine learning precipitation-type algorithm that utilizes reanalysis and surface observations. By comparing it with the Bourgouin precipitation-type algorithm as a baseline, we demonstrate that our algorithm improves the critical success index (CSI) for all examined precipitation types. Moreover, when compared with the precipitationtype diagnosis in reanalysis, our algorithm exhibits increased F1 scores for snow, freezing rain, and ice pellets. Subsequently, we utilize the algorithm to compute a freezing-rain climatology over the eastern United States. The resulting climatology pattern aligns well with observations; however, a significant mean bias is observed. We interpret this bias to be influenced by both the algorithm itself and assumptions regarding precipitation processes, which include biases associated with freezing drizzle, precipitation occurrence, and regional synoptic weather patterns. To mitigate the overall bias, we propose increasing the precipitation cutoff from 0.04 to 0.25 mm h-1, as it better reflects the precision of precipitation observations. This adjustment yields a substantial reduction in the overall bias. Finally, given the strong performance of LightGBM in predicting mixed precipitation episodes, we anticipate that the algorithm can be effectively utilized in operational settings and for diagnosing precipitation types in climate model outputs.
document
https://n2t.org/ark:/85065/d7nz8ct1
eng
geoscientificInformation
Text
publication
2016-01-01T00:00:00Z
publication
2024-03-01T00:00:00Z
Copyright 2024 American Meteorological Society (AMS).
None
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
OpenSky Support
UCAR/NCAR - Library
PO Box 3000
Boulder
80307-3000
name: homepage
pointOfContact
2025-07-10T20:03:48.466040