Identification

Title

Turbulence structure and mixing in strongly stable boundary-layer flows over thermally heterogeneous surfaces

Abstract

Direct numerical simulations (DNS) at bulk Reynolds number Re = 10(4) and bulk Richardson number Ri = 0.25 of plane Couette flow are performed with the results used to analyze the structure and mixing intensity in strongly stable boundary-layer flows. The Couette flow set-up is used as a proxy for a real-world stable boundary layer flow with surface thermal heterogeneity. Along the upper and lower walls, the temperature is either homogeneous or varies sinusoidally, but the horizontal-mean surface temperature is the same in all cases. Over homogeneous surfaces, the strong stratification always quenches turbulence resulting in linear velocity and temperature profiles. However, over a heterogeneous surface turbulence survives. Molecular diffusion and turbulence contribute to down-gradient momentum transfer. The total (diffusive plus turbulent) heat flux is directed downward, but its turbulent contribution is positive, i.e., up the mean temperature gradient. Analysis of covariances of velocity and temperature, their skewness, and the flow structure suggests that counter-gradient heat transport is due to quasi-organized cell-like vortical motions generated by surface thermal heterogeneity. These motions transfer heat upwards similar to their counterparts in highly convective boundary layers. Thus, the flow over heterogeneous surface features local convective instabilities and upward eddy heat transport, although the overall stratification remains stable with downward mean heat transfer. The DNS results are compared to the results from large-eddy simulations of weakly stable boundary layers (Mironov and Sullivan in J Atmos Sci 73:449-464, 2016). The DNS findings corroborate the key role of temperature variance in setting the structure and transport properties of stably stratified flow over heterogeneous surfaces, and the importance of third-order transport of the temperature variance.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7qr521d

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2023-01-20T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:41:17.383526

Metadata language

eng; USA