Identification

Title

Comparison of two land surface schemes in week-long cloud-system-resolving simulations of warm season precipitation

Abstract

This paper presents a case study of the impact of land surface treatment on warm season precipitation simulations at convection-permitting grid resolution. Two surface schemes are tested: Dudhia’s five-layer soil model (FLSM) and the Noah land-surface model (NLSM). The experimentation case involves a 1-week episode of active summertime convection over the central United States. The overall precipitation features, such as the diurnal regeneration of zonally propagating rainfall episodes and the spatial distribution of accumulative rainfall, are adequately replicated by the two parameterizations. In comparison, NLSM produces roughly 12% more and broader rainfall than FLSM. This differential rainfall amount is consistent with the differential surface moisture fluxes between the two schemes, whereas the precipitation feedback plays a negligible role. It is also found that FLSM generates comparatively stronger sensible heat transports from the land surface and thus a warmer temperature near the surface.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7hq40b1

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2010-06-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

An edited version of this paper was published by Springer. Copyright 2010 Springer.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:44:37.633527

Metadata language

eng; USA