Identification

Title

Smoke from 2020 United States wildfires responsible for substantial solar energy forecast errors

Abstract

The 2020 wildfire season (May through December) in the United States was exceptionally active, with the National Interagency Fire Center reporting over 10 million acres (>40 000 km(2)) burned. During the September 2020 wildfire events, large concentrations of smoke particulates were emitted into the atmosphere. As a result, smoke was responsible for similar to 10%-30% reduction in solar power production during peak hours as recorded by the California Independent System Operator (CAISO) sites. In this study, we focus on a 9 d period in September when wildfire smoke had a profound impact on solar energy production. During the smoke episodes, hour-ahead forecasts utilized by CAISO did not include the effects of smoke and therefore overestimated the expected power production by similar to 10%-50%. Here we use multiple observational networks and a numerical weather prediction (NWP) model to show that the wildfire events of 2020 had a significantly detrimental influence on solar energy production due to high aerosol loading. We find that including the contribution of biomass burning particles greatly improves the day-ahead solar energy bias forecast of both global horizontal irradiance and direct normal irradiance by nearly similar to 50%. Our results suggest that a more comprehensive treatment of aerosols, including biomass burning aerosols, in NWP models may be an important consideration for energy grid balancing, in addition to solar resource assessment, as solar power reliance increases.

Resource type

document

Resource locator

Unique resource identifier

code

http://n2t.net/ark:/85065/d7v69p4f

codeSpace

Dataset language

eng

Spatial reference system

code identifying the spatial reference system

Classification of spatial data and services

Topic category

geoscientificInformation

Keywords

Keyword set

keyword value

Text

originating controlled vocabulary

title

Resource Type

reference date

date type

publication

effective date

2016-01-01T00:00:00Z

Geographic location

West bounding longitude

East bounding longitude

North bounding latitude

South bounding latitude

Temporal reference

Temporal extent

Begin position

End position

Dataset reference date

date type

publication

effective date

2022-03-01T00:00:00Z

Frequency of update

Quality and validity

Lineage

Conformity

Data format

name of format

version of format

Constraints related to access and use

Constraint set

Use constraints

Copyright author(s). This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Limitations on public access

None

Responsible organisations

Responsible party

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata on metadata

Metadata point of contact

contact position

OpenSky Support

organisation name

UCAR/NCAR - Library

full postal address

PO Box 3000

Boulder

80307-3000

email address

opensky@ucar.edu

web address

http://opensky.ucar.edu/

name: homepage

responsible party role

pointOfContact

Metadata date

2023-08-18T18:34:31.132797

Metadata language

eng; USA